On a Theorem of Livsic

نویسندگان

  • William T. Ross
  • Alexandru Aleman
  • R. T. W. Martin
چکیده

The theory of symmetric, non-selfadjoint operators has several deep applications to the complex function theory of certain reproducing kernel Hilbert spaces of analytic functions, as well as to the study of ordinary differential operators such as Schrodinger operators in mathematical physics. Examples of simple symmetric operators include multiplication operators on various spaces of analytic functions such as model subspaces of Hardy spaces, deBranges-Rovnyak spaces and Herglotz spaces, ordinary differential operators (including Schrodinger operators from quantum mechanics), Toeplitz operators, and infinite Jacobi matrices. In this paper we develop a general representation theory of simple symmetric operators with equal deficiency indices, and obtain a collection of results which refine and extend classical works of Krein and Livsic. In particular we provide an alternative proof of a theorem of Livsic which characterizes when two simple symmetric operators with equal deficiency indices are unitarily equivalent, and we provide a new, more easily computable formula for the Livsic characteristic function of a simple symmetric operator with equal deficiency indices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth Cocycle Rigidity for Expanding Maps, and an Application to Mostow Rigidity

We consider the Livsic cocycle equation, with values in compact Lie groups, and dynamics given by a piecewise-smooth expanding Markov map. We prove that any measurable solution to this equation must necessarily have a smooth version. We deduce a smooth rigidity theorem for conjugacies between piecewise-conformal expanding Markov maps, and apply this to give a variation on the proof of Mostow's ...

متن کامل

Livsic Theorems, Maximizing Measures and the Stable Norm

In this article we consider two results motivated by Livsic’s well known theorem that, for a hyperbolic system, a Hölder continuous function is determined, up to a coboundary, by its values around closed orbits. The first result relates to positive values around orbits and the second result to values for finitely many orbits. We also present some new results on maximizing measures and the bound...

متن کامل

Regularity of Solutions to the Measurable Livsic Equation

In this note we give generalisations of Livsic’s result that a priori measurable solutions to cocycle equations must in fact be more regular. We go beyond the original continuous hyperbolic examples of Livsic to consider examples of this phenomenon in the context of: (a) β-transformations; (b) rational maps; and (c) planar maps with indifferent periodic points. Such examples are not immediately...

متن کامل

On Tychonoff's type theorem via grills

‎Let ${X_{alpha}:alphainLambda}$ be a collection of topological spaces‎, ‎and $mathcal {G}_{alpha}$ be a grill on $X_{alpha}$ for each $alphainLambda$‎. ‎We consider Tychonoffrq{}s type Theorem for $X=prod_{alphainLambda}X_{alpha}$ via the above grills and a natural grill on $X$ ‎related to these grills, and present a simple proof to this theorem‎. ‎This immediately yields the classical theorem...

متن کامل

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014